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Time present and time past

Are both perhaps present in time future,

And time future contained in time past

T.S. Eliot, The four quartets

2



The goal of this talk is to show, with some examples, how arbitrages can occur using an

extra-information (in a progressive enlargement framework), mainly information on a non-traded

default event. In a log-maximization framework, the impact of the new information is contained in the

drift of the prices, written as semi-martingales in the new filtration.

1. Toy Example

2. Brownian filtration and progressive enlargement

3. Arbitrages with honest times

3



Toy Example

4



The Model

We consider the case where the sources of randomness are the occurrence of two random times τ1
and τ2 (finite positive random variables).

We denote by F the filtration generated by the process (Ht := 11τ1≤t). This will represent the

information available to all market participants which are using F-predictable strategies, when dealing

with F-adapted prices.

We denote by H2 the filtration generated by the process (H2
t := 11τ2≤t) and by G the filtration

generated by both processes G = F ∨H2. One participant (called "informed") has access to the

information H2, i.e., he is able to use G-predictable strategies when dealing with F-adapted prices.
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We denote by G(t, s) = P(τ1 > t, τ2 > s) the survival probability (a deterministic function) of the

pair (τ1, τ2) assumed to be strictly positive and continuously differentiable in both variables. Note

that G(t, 0) = P(τ1 > t) is the survival probability of τ1. The function G is known from all market

participants.

Assuming that P is the pricing measure and that the interest rate is null,

P (t, T ) := P(τ1 > T |Ft) = 11t≤τ1

G(T, 0)

G(t, 0)

represents the price of a defaultable bond.
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Log-utility maximization

We assume, for simplicity, that τ1 has an exponential law of parameter λ.

We introduce the fundamental (P,F) martingale

M1
t := Ht − λ(t ∧ τ1) = Ht −

∫ t

0

(1−Hs)λds.

Then,

P (t, T ) = 11t≤τ1

G(T, 0)

G(t, 0)
= 11t≤τ1e

−λ(T−t)

dP (t, T ) = −e−λ(T−t)dM1
t

F = H1,G = H1 ∨ H2 7



We now compute the growth optimal portfolio in the two cases where the asset P (·, T ) is traded

and the agent has (or has not) information on τ2.

More precisely, we solve the log utility maximization

supE(ln(Xx,π
T )) for π ∈ F, and for π ∈ G

where

dXx, πt = ϑtdP (t, T ) = πtXt−dM
1
t = πtX

x,π
t− (dHt − (1−Ht)λdt)

or

Xx,π
t = x exp(−λ

∫ t∧τ1

0

πsds)(1 + πτ1)
Ht

so that

ln(Xx,π
t ) = lnx+

∫ t

0

ln(1 + πs)dHs − λ

∫ t∧τ1

0

πsds

F = H1,G = H1 ∨ H2 8



• Using F-predictable strategies

sup{E(ln(Xx,π
T )), π ∈ F} = lnx

• Using G-predictable strategies, we have to note that M1 is not a G-martingale, and we have to

deal with the (P,G)-martingale

M2
t := Ht −

∫ t

0

(1−Hs)λ
2
sds,

where

λ2t = 11t≤τ2

−∂1G(t, t)
G(t, t)

+ 11τ2<t
∂12G(t, τ2)

−∂1G(t, τ2)

ln(Xx,π
t ) = lnx+

∫ t

0

ln(1 + πs)dHs − λ

∫ t∧τ1

0

πsds

= lnx+

∫ t

0

ln(1 + πs)dM
2
s +

∫ t∧τ1

0

ln(1 + πs)λ
2
sds− λ

∫ t∧τ1

0

πsds

F = H1,G = H1 ∨ H2 9



the optimal strategy is π such that 1 + πt =
λ2
t

λ . Then

sup{E(ln(Xx,π
T ), π ∈ G} = lnx+ E

(∫ T∧τ1

0

(
λ2s ln

λ2s
λ

− (λ2s − λ)

)
ds

)
≥ lnx

and, under adequate hypotheses E
(∫ T∧τ1

0

(
λ2s ln

λ2
s

λ − (λ2s − λ)
)
ds
)
<∞

F = H1,G = H1 ∨ H2 10



Of course, it may happen that

E

(∫ T∧τ1

0

(
λ2s ln

λ2s
λ

− (λ2s − λ)

)
ds

)
= 0

(e.g. if τ2 is independent from τ1).

It can also happen that

E

(∫ T∧τ1

0

(
λ2s ln

λ2s
λ

− (λ2s − λ)

)
ds

)
= ∞

e.g. if τ1 = τ2 + ϵ.

F = H1,G = H1 ∨ H2 11



Drift information in a Progressive Enlargement in a Brownian setting
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We assume in this part that

• F is the filtration generated by a Brownian motion W and G is a filtration larger than F

• there exists an integrable G-adapted process µG such that dWt = dWG
t + µG

t dt where WG is

a G-BM,

• the financial market where a risky asset with price S (an F-adapted positive process) and a riskless

asset S0 ≡ 1 are traded is arbitrage free. More precisely, we assume w.l.g. that S is a (P,F) (local)

martingale, dSt = StσtdWt.
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Let X be the wealth process associated with a G-predictable strategy

dXt = π̂tdSt = π̂tStσtdWt = πtXtdWt = πtXt(dW
G
t + µG

t dt)

so that

Xt = x exp

(∫ t

0

πsdW
G
s − 1

2

∫ t

0

π2
sds+

∫ t

0

πsµ
G
s ds

)
It is then easy to see that the optimal π is π∗ = µG and that

lnX∗
t = lnx+

∫ t

0

π∗
sdW

G
s +

1

2

∫ t

0

(µG
s )

2ds

so that

sup
π∈F

E(lnXT ) = lnx < sup
π∈G

E(lnXT ) = lnx+ E
(
1

2

∫ t

0

(µG
s )

2ds

)
which leads to a finite utility if

E
(∫ t

0

(µG
s )

2ds

)
<∞

F = FW ⊂ G, dWt = dWG
t + µG

t dt 14



From dSt = StσtdWt = Stσt(dW
G
t + µG

t dt), we see that if Lt := E(−µGWG)t is a

G-martingale, NFLVR holds, and if L is a local martingale, one say that the no arbitrages of the

first kind condition (NA1) holds (there exists a positive local martingale L such that SL is a P local

martingale). The local martingale L is then called a deflator.

F = FW ⊂ G, dWt = dWG
t + µG

t dt 15



Particular cases of enlargement of filtration

Particular cases of enlargement of filtration

Density hypothesis

We assume that there exists a positive Ft ⊗ B(R+)-measurable function (ω, u) → αt(ω, u)

which satisfies for any Borel bounded function f ,

E(f(τ)|Ft) =

∫
R+

f(u)αt(u)ν(du), P− a.s.

where ν is the law of τ .
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Particular cases of enlargement of filtration

Under the positive density hypothesis, it can be proved that the probability P∗, defined on

Fτ = F ∨ σ(τ) as

dP∗|Ft∨σ(τ) =
1

αt(τ)
dP|Ft∨σ(τ)

satisfies the following assertions

(i) Under P∗, τ is independent from Ft for any t

(ii) P∗|Ft = P|Ft

(iii) P∗|σ(τ) = P|σ(τ)
The (F,P) martingale S is - using the independence property - an (Fτ ,P∗) martingale and P∗ is

an e.m.m. In that case,

Wt =W Fτ

t +

∫ t

0

d⟨W,α(u)⟩s
αs(u)

|u=τ

The process α(u) being an F martingale, dαt(u) = σt(u)dWt and it follows that

µFτ

s =
σs(τ)

αs(τ)

In that model NFLVR as well as NA1 hold in the filtration Fτ .
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Particular cases of enlargement of filtration

If G is the smallest filtration that contains F and makes τ a stopping time,

Wt =WG
t +

∫ t∧τ

0

d⟨W,Z⟩s
Zs

+

∫ t

t∧τ

d⟨W,α(u)⟩s
αs(u)

|u=τ

where

Zt = P(τ > t|Ft) =

∫ ∞

t

αt(u)f(u)du

and WG is a G-Brownian motion.

It follows that

µG
s = 11s≤τ

1

Zs

∫ ∞

s

σs(u)ν(du) + 11τ<s
σs(τ)

αs(τ)
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Particular cases of enlargement of filtration

Immersion setting

We recall that the filtration F is immersed in G if any F martingale is a G martingale. This is

equivalent to

P(τ > t|Ft) = P(τ > t|F∞)

This is the case in many default models (e.g., based on a Cox process construction).

Let S be an F local martingale, then it is a G local martingale as well.

Under immersion, the optimal log utility (in fact any utility maximisation) is the same in the two

filtrations.
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Particular cases of enlargement of filtration

Emery’s Example

We present an example where there are no arbitrages before τ and arbitrages after τ (roughly

speaking, E(
∫ τ

0
µ2
sds) = 0,E(

∫ T

τ
µ2
sds) = ∞)

Let S be defined through dSt = σStdWt, where W is a Brownian motion.

Let τ = sup {t ≤ 1 : S1 − 2St = 0}, that is the last time before 1 when the price is equal to half

of its terminal value at time 1.
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Particular cases of enlargement of filtration

Note that

{τ ≤ t} = { inf
t≤s≤1

2
Ss

St
≥ S1

St
}

therefore

P(τ ≤ t|Ft) = P( inf
t≤s≤1

2Ss−t ≥ S1−t) = Φ(1− t)

where Φ(u) = P(infs≤u 2Ss ≥ Su). It follows that the Azéma supermartingale is a deterministic

decreasing function, hence, τ is a pseudo-stopping time, hence S is a G-martingale up to time τ

and there are no arbitrages up to τ . The information drift is null.
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Particular cases of enlargement of filtration

There are obviously classical arbitrages after τ , since, at time τ , one knows the value of S1 and

S1 > Sτ .

Let K = (F,G) be a filtration. A non-negative K∞-measurable random variable ξ with

P (ξ > 0) > 0 yields an arbitrage of the fist kind if for all x > 0 there exists an element θx ∈ AK
x

such that V (x, θx)∞ := x+ (θx � S)∞ ≥ ξ P-a.s.

The random variable ξ := 1
2S1 is an arbitrage of the first kind. Indeed, for t > τ , and x > 0, one

has, for θx = 1

x+

∫ 1

τ

θxsdSs = x+ S1 − Sτ = x+ ξ > ξ

One can check that indeed E(
∫ 1

τ
µ2
sds) = ∞.
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Particular cases of enlargement of filtration

There are obviously classical arbitrages after τ , since, at time τ , one knows the value of S1 and

S1 > Sτ .

Let K = (F,G) be a filtration. A non-negative K∞-measurable random variable ξ with

P (ξ > 0) > 0 yields an arbitrage of the fist kind if for all x > 0 there exists an element θx ∈ AK
x

such that V (x, θx)∞ := x+ (θx � S)∞ ≥ ξ P-a.s.

The random variable ξ := 1
2S1 is an arbitrage of the first kind in G. Indeed, for t > τ , and x > 0,

one has, for θx = 1

x+

∫ 1

τ

θxsdSs = x+ S1 − Sτ = x+ ξ > ξ

One can check that indeed E(
∫ 1

τ
µ2
sds) = ∞.
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Enlargement of filtration results

Enlargement of filtration results

We restrict our attention to the case where F is a Brownian filtration and τ avoids F-stopping times.

We define the (continuous) F-supermartingale

Zt := P
(
τ > t

∣∣ Ft

)
.

One can write the Doob-Meyer decomposition of Z as

Z = m−Ap

where m is an F-martingale and Ap is a (predictable) increasing process

Note that m is non-negative: indeed mt = E(Ap
∞|Ft).
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Enlargement of filtration results

Arbitrages of the first kind
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Before τ

Before τ

To any F local martingale X , we associate the G local martingale X̂ (stopped at time τ ) defined as

X̂t := Xτ
t −

∫ t∧τ

0

1

Zs
d⟨X,m⟩s

In particular, in a Brownian filtration

Ŵt :=W τ
t −

∫ t∧τ

0

1

Zs
d⟨W,m⟩s =W τ

t −
∫ t∧τ

0

µG
s ds

hence, NA1 holds before τ .
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Before τ

More generally, if F is a filtration such that all martingales are continuous and τ avoids stopping

times, NA1 holds before τ .

Let m̂ be the G-martingale stopped at time τ associated with m, on t ≤ τ

m̂t := mτ
t −

∫ t

0

d⟨m,m⟩Fs
Zs

and define a positive G local martingale L as dLt = −Lt

Zt
dm̂t. Recall that

Ŝt := Sτ
t −

∫ t∧τ

0

d⟨S,m⟩Fs
Zs

is a G local martingale. From integration by parts, we obtain

d(LSτ )t = LtdS
τ
t + StdLt + d⟨L, Sτ ⟩Gt

G−mart
= Lt

1

Zt
d⟨S,m⟩Ft +

1

Zt−
Lt−d⟨S, m̂⟩Gt

G−mart
= Lt

1

Zt
(d⟨S,m⟩t − d⟨S,m⟩t) = 0

Since SL is a G-local martingale, NA1 holds .
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Before τ

More generally, if F is a filtration such that all martingales are continuous and τ avoids stopping

times, NA holds before τ .

Let m̂ be the G-martingale stopped at time τ associated with m, on t ≤ τ

m̂t := mτ
t −

∫ t

0

d⟨m,m⟩Fs
Zs

and define a positive G local martingale L as dLt = −Lt

Zt
dm̂t. Recall that

Ŝt := Sτ
t −

∫ t∧τ

0

d⟨S,m⟩Fs
Zs

is a G local martingale. From integration by parts, we obtain

d(LSτ )t = LtdS
τ
t + StdLt + d⟨L, Sτ ⟩Gt

G−mart
= Lt

1

Zt
d⟨S,m⟩Ft +

1

Zt
Ltd⟨S, m̂⟩Gt

G−mart
= Lt

1

Zt
(d⟨S,m⟩t − d⟨S,m⟩t) = 0

Since SL is a G-local martingale, NA1 holds.

Z = m−Ap 28



Case of a Poisson filtration

Case of a Poisson filtration

In the general case,

X̂t := Xτ
t −

∫ t∧τ

0

1

Zs−
d⟨X,m⟩Fs

holds true if m is defined as Z = m−Ao,F where Ao,F is the dual OPTIONAL projection of

11[[0,τ [[. However, one faces some technical problem, as shown in the following simple example.

We assume that S is an F-martingale of the form dSt = St−ψtdMt, where ψ is a predictable

process, satisfying ψ > −1 and ψ ̸= 0, where M is the compensated martingale of a standard

Poisson process.

From Predictable Representation Property, dmt = φtdMt for some F-predictable process φ, so

that, on t ≤ τ ,

dm̂t = dmt −
1

Zt−
d⟨m,m⟩t = dmt −

1

Zt−
λφ2

tdt.

29



Case of a Poisson filtration

In a Poisson setting, for any random time τ such that
∫ τ

0
11Zt−+φtdt = 0, NA1 holds before τ .

Indeed

L = E
(
− 1

Z− + φ
� m̂
)

= E
(
− φ

Z− + φ
� M̂
)
,

is a Fτ -local martingale deflator for Sτ .

We are looking for an Fτ -local martingale deflator of the form dLt = Lt− κt dm̂t (and

ψtκt > −1) so that L is positive and SτL is an Fτ -local martingale. Integration by parts formula

leads to (on t ≤ τ )

d(LS)t = Lt−dSt + St−dLt + d[L, S]t

Fτ−mart
= Lt− St− ψt

1

Zt−
d⟨M,m⟩t + Lt− St− κtψtφtdNt

Fτ−mart
= Lt− St− ψt

1

Zt−
φtλdt+ Lt− St− κt ψt φt λ(1 +

1

Zt−
φt)dt

= Lt− St− ψt φt λ

(
1

Zt−
+ κt(1 +

1

Zt−
φt)

)
dt.
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Case of a Poisson filtration

Therefore, for κt = − 1
Zt−+φt

, one obtains a deflator. Note that

dLt = Lt−κtdm̂t = −Lt−
1

Zt− + φt
φtdM̂t

is indeed a positive Fτ -local martingale, since 1
Zt−+φt

φt < 1.
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General result

General result

We introduce Z̃t = P(τ ≤ t|Ft). For any (bounded) X satisfying NA1(F), Xτ satisfies

NA1(G) if and only if the thin set Λ :=
{
Z̃ = 0 & Z− > 0

}
is evanescent, equivalently,

η = ∞) where η = ζ11{Z̃ζ=0<Zζ−} +∞11Λc and ζ := inf{t : Zt = 0}

The proof in Aksamit et al. is based on the following (new) decomposition: if X is an F-local

martingale, the process

XG
t := Xτ

t −
∫ t∧τ

0

1

Z̃s

d[m,X]s + (∆Xη 11[[η,∞[[)
p,F
t∧τ , t ≥ 0

is a G-local martingale.

Then, one defines

ℓ = E(− 1

Z−
11[0,τ ] �mG).

Under the evanescent condition, ℓ is a local martingale deflator.
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General result
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General result

General result

We introduce Z̃t = P(τ ≤ t|Ft). For any (bounded) X satisfying NA1(F), Xτ satisfies

NA1(G) if and only if the thin set Λ :=
{
Z̃ = 0 & Z− > 0

}
is evanescent, equivalently,

η = ∞) where η = ζ11{Z̃ζ=0<Zζ−} +∞11Λc and ζ := inf{t : Zt = 0}

The proof in Aksamit et al. is based on the following (new) decomposition: if X is an F-local

martingale, the process
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t := Xτ
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0

1

Z̃s

d[m,X]s + (∆Xη 11[[η,∞[[)
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Honest times

Honest times

In order to study the behavior after τ , one needs an hypothesis which implies that W is a G
semi-martingale. We restrict our attention to the case where all F-martingales are continuous and τ

avoids F-stopping times.

In a continuous filtration, a random time τ which avoids F-stopping times is honest if, Zτ = 1. This

is equivalent to Ap
t = Ap

t∧τ .
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Honest times

In the case where τ = sup{t ≤ T, St = sups≤T Ss}, one can find, in Dellacherie, Maisonneuve,

Meyer (1992), Probabilités et Potentiel, chapitres XVII-XXIV: Processus de Markov (fin),

Compléments de calcul stochastique, page 137 Par exemple, St peut représenter le cours d’une

certaine action à l’instant t, et τ est le moment idéal pour vendre son paquet d’actions. Tous

les spéculateurs cherchent à connaître τ sans jamais y parvenir, d’où son nom de variable

aléatoire honnête.

For instance, St may represent the price of some stock at time t and τ is the optimal time to liquidate

a position in that stock. Every speculator strives to know when τ will occur, without ever achieving

this goal. Hence, the name of honest random variable.
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Honest times

Let τ be a finite honest time and assume that the market (S0, S) is complete. Then, if τ is not

an F-stopping time, there are classical arbitrages before and after τ .

37



Honest times

Before τ

From m = Z +Ap and Zτ = 1, we deduce that mτ ≥ 1.

Since τ is not a stopping time, P(Ap
τ > 0) > 0.

The market being complete, the martingale m is the value of a self financing portfolio, with initial

value 1, and mτ = 1 +
∫ τ

0
φsdSs for a predictable φ. Since mt ≥ 0, the strategy φ is admissible.
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Honest times

Classical arbitrages after τ : We restrict our attention to the case where A0 is continuous (i.e., τ

avoids F stopping times) so that Z̃t = Zt = P(τ > t|Ft)

Using m = Z +Ap, one obtains that, for t > τ , mt −mτ = Zt − 1.

Consider the (finite) G-stopping time

ν := inf{s > τ : Zs ≤
1

2
}.

Then,

mν −mτ = Zν − 1 ≤ −1

2
≤ 0,

and, as τ is not an F-stopping time,

P(mν −mτ < 0) = 1 > 0.

Hence −
∫ t∧ν

τ
φsdSs = mτ∧t −mt∧ν is the value of a self-financing strategy with initial value 0

and terminal value mτ −mν ≥ 0 satisfying P(mτ −mν > 0) > 0.

From m = Z +A and the fact that At = At∧τ , one obtains that mt −mτ = Zt − Zτ ≥ −1,

hence the strategy is admissible.
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Honest times

Examples in a Brownian filtration

In this section, we assume that

St = exp(σWt −
1

2
σ2t), σ > 0 .

• Consider the following finite honest time

g := sup{t : St = a},

where 0 < a < 1. This time is well defined, since St goes to 0 when t goes to infinity.

Then Zt = 1− (1− St

a )+, and

dZt = 11{St<a}
1

a
dSt −

1

2a
dℓat

Therefore,

φ :=
1

a
11{S<a}
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Honest times

It follows that

Wt = WG
t +

∫ t∧g

0

d⟨W,m⟩s
Zs

−
∫ t

t∧g

d⟨W,m⟩s
1− Zs

= WG
t +

∫ t∧g

0

σ11{Ss<a}ds−
∫ t

t∧g

11{Ss<a}
σSs

a− Ss
ds

= WG
t +

∫ t∧g

0

σ11{Ss<a}ds−
∫ t

t∧g

σSs

a− Ss
ds

On the interval [0, g], one has µs = σ11{Ss<a}, hence

E
(∫ g

0

µ2
sds

)
= σ2E

(∫ g

0

11Ss<ads

)
< σ2E(g) <∞
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Honest times

• Let, S∗
t = sup{Ss, s ≤ t} and

τ = sup{t : St = S∗
∞} = sup{t : St = S∗

t }

Then, Zt =
St

S∗
t

and dmt =
1
S∗
t
dSt, therefore φt =

1
S∗
t

.

Wt = WG
t +

∫ t∧τ

0

d⟨W,m⟩s
Zs

−
∫ t

t∧τ

d⟨W,m⟩s
1− Zs

= WG
t +

∫ t∧τ

0

σds−
∫ t

t∧τ

σSs

S∗
s − Ss

ds

On the interval [0, τ ], one has µs = σ, hence

E
(∫ τ

0

µ2
sds

)
= σ2E(τ) <∞
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Honest times

After τ

We need an hypothesis that implies that W is a G-semi martingale. We have presented the density

hypothesis. Another case is the one of honest times.

We now assume that τ is a honest time (i.e., the end of a predictable set), which satisfies Zτ < 1.
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Honest times

If Zτ = 1, the random time τ avoids F stopping times and one can prove, in the case of Brownian

filtration that there exists an arbitrage of the first kind.
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Honest times

Assume that τ is a honest time, which satisfies Zτ < 1 and that all F martingales are

continuous. Then, NA1 holds after τ . A deflator is given by dLt = − Lt

1−Zt
dm̂t.

The proof is based on Itô’s calculus and the fact that, for any F martingale X (in particular for m and

S)

X̂t := Xτ
t −

∫ t∧τ

0

d⟨X,m⟩Fs
Zs

+

∫ t

t∧τ

d⟨X,m⟩Fs
1− Zs

is a G local martingale. Looking for a deflator of the form dLt = Ltκtdm̂t, and using integration by

parts formula, we obtain that, for κ = −(1− Z)−1, the process L(S − Sτ ) is a local martingale.
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