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Motivation

I Discrete samples of multivariate asset return distributions
I For n risky assets with expected (excess) returns µn,

covariance matrix Sn, and m different states of nature, find

Xmn =


x11 x12 . . . x1n
x21 x22 . . . x2n
...

...
. . .

...
xm1 xm2 . . . xmn


such that

m−1(Xmn − 1mµ
′
n)
′(Xmn − 1mµ

′
n) = Sn.
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Motivation

I There exist a variety of methods for generating such
scenario trees (moment matching, scenario reduction,. . . )

I Additional requirement for financial applications: samples
must be free of arbitrage

I Necessary (but not sufficient) condition: m ≥ n
I Exact matching of the covariance matrix Sn requires

m ≥ n + 1
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Motivation

I Prior to this paper, the standard approach for generating
arbitrage-free scenario trees was as follows:

1. Generate a scenario tree (using any of the available
methods)

2. Check for arbitrage (i.e., solve an LP)
3. If arbitrage opportunities are found, discard the tree and

start again, else: finished
I Problems: Computationally intensive, no guarantee for

success for given tree size/branching factor (@ theoretical
result for required minimum tree size)
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Motivation

I Basis for our approach: Ledermann et al. (2011) (ROM
simulation – multivariate samples matching pre-specified
means and covariances)

I Results: We. . .
I extend ROM simulation to ensure arbitrage-free samples,
I derive analytical bounds to check for arbitrage ex ante

(without solving an LP),
I provide insights into the ”geometry of no-arbitrage”.

Alois Geyer, Michael Hanke, Alex Weissensteiner No-Arbitrage ROM Simulation



Motivation
ROM Simulation

No-Arbitrage ROM Simulation
Main Improvements
Numerical Example

Conclusion

ROM Simulation

I n assets with expected (excess) returns µn and covariance
matrix Sn

I Goal: generate a sample Xmn of m observations on the n
random variables such that

m−1(Xmn − 1mµ
′
n)
′(Xmn − 1mµ

′
n) = Sn. (1)

I Sn can be decomposed (since pos. semi-def.) into
Sn = A′nAn (using, e.g., Cholesky decomposition)
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ROM Simulation

I Defining
Lmn = m−1/2(Xmn − 1mµ

′
n)A

−1
n , (2)

solving (1) is equivalent to finding a matrix Lmn satisfying

L′mnLmn = In with 1′mLmn = 0′. (3)

I Ledermann (2011) call solutions to eq. (3) L matrices
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Mechanics of ROM Simulation

I In general: pre-multiply an L matrix by a permutation
matrix and post-multiply this product by any square
orthogonal matrix Rn

I Pre-multiplication is primarily for controlling the
time-ordering of random samples (not relevant here)

I The basis for our paper is the following simplified version:

Xmn = 1mµ
′
n +
√

mLmnRnAn (4)
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ROM Simulation

I Since we will frequently need the scaled L matrix with
column variance equal to 1, we define L =

√
mLmn

I Ledermann et al. (2011) suggest using matrices Rn
representing randomized rotation angles

I Main difference of our extension: restricted intervals for
random rotation angles
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ROM Simulation

I L matrices as defined before have zero mean
I Ymn = Xmn − 1mµ

′
n will be important, which can be

computed from Lmn using eq. (2):

Ymn =
√

mLmnAn ≡ LAn (5)

I Ymn is linked to Lmn by a particular affine transformation
A(·), Ymn = A(Lmn)

I Ymn can be interpreted as a sample of asset returns with
the correct covariance structure Smn and means of 0n
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No-Arbitrage Conditions for ROM Simulation

I Geometric interpretation of L matrices: Rows of −Lmn
define a simplex (can be constructed deterministically)

I This simplex is regular if m=n+1 (“complete market” with n
risky assets and one risk-free asset), and irregular if
m>n+1 (“incomplete market”)

I Multiplying the simplex by Rn rotates the simplex
I Absence of arbitrage means that expected excess returns

µn are inside the simplex
I Key insight: Rn can be chosen judiciously to ensure that µn

is inside the simplex
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Two-dimensional Case
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Generalization to n Dimensions

I Equilateral triangle changes to a regular n-simplex
I In- and circumcircles of the triangle become hyperspheres,

whose images are hyperellipsoids
I Deterministic construction of the simplex easily generalizes

to n dimensions
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Rotation in n Dimensions

I Concept of rotation of the simplex in the n-dimensional
case requires a precise definition (Aguilera-Pérez (2004)
algorithm)

I Vertex A of simplex and target return define rotation plane
I Rotation occurs around a (n-2)-dimensional subspace

orthogonal to the rotation plane
I Rotation angle: intersection of the rotation plane with the

simplex results in a triangle, which is not regular
I For target returns in region (îi), the rotation angle can be

sampled from

γ̂ ∼ U(θ̂ − α̂−, θ̂ + α̂+) (6)
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Rotation in n Dimensions
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Effects of Increasing the Sample Size m

I What happens to the arbitrage-free regions if m > n + 1
(i.e., when increasing the branching factor in scenario
trees)?

I → n-simplex becomes a polyhedron in n-dimensional
space, whose m vertices are given by the rows of −X

I Boundaries between regions (̂i)-(îii) are derived by rotating
“extreme” polyhedra
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Rotating extreme polyhedra
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Effects of Increasing the Sample Size m

I Radius of hypersphere, which is guaranteed to be
arbitrage-free: 1/

√
m − 1

I Radius of hypersphere beyond which all scenarios admit
arbitrage:

√
m − 1

I ⇒ Increasing the sample size allows constructing
arbitrage-free scenarios for more extreme expected returns

I At the same time, however, increasing m shrinks region (̂i),
which is guaranteed to be free of arbitrage

I (Surprising) Insight: Bounds depend only on the sample
size m, but are independent of the number of assets n (!)
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(No-)Arbitrage Areas Separated by Analytical Bounds
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Main Improvements Over Original ROM Simulation

I Analytical bounds classify the problem ex ante into 3
areas:

I Region (i): no-arbitrage is guaranteed. Advantage here: No
need to check samples for arbitrage.

I Region (iii): arbitrage must be present. Advantage here:
Known ex ante, together with increase in sample size
required to allow for arbitrage-free samples.

I Region (ii): (possibly frequent) re-sampling is replaced by
(one-off) judicious rotation. Size of advantage depends on
probability of arriving at arbitrage-free samples when using
random rotation angles.
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Two-dimensional Case
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Numerical Example

I Data: ”5 industry portfolios” from K. French’s website
(monthly data from 1926-2012)

I Expected returns and covariances are estimated from
10-year rolling windows

I This implies a time-varying Mahalanobis distance
I Using the minimum sample size of m=6, we compute the

relative distance between inner and outer ellipsoid
I Depending on this relative distance, we also compute

numerically the probability of arriving at arbitrage-free
samples when sampling randomly in region (ii)
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Numerical Example
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Numerical Example
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Conclusion

I Extension of original ROM simulation: No-arbitrage ROM
simulation algorithm

I If no-arbitrage is theoretically possible: arbitrage-free
samples are generated upon the first attempt

I If not: analytical results for bounds provide the minimum
sample size to make no-arbitrage possible

I No need for either arbitrage checks or re-sampling
I Retains features of original ROM simulation (i.e., matches

first and second moments as well as correlations of
multivariate asset return distributions)
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