Fair valuation and hedging of contracts under endogenous collateralization

Marek Rutkowski

School of Mathematics and Statistics University of Sydney marek.rutkowski@sydney.edu.au

Risk: Modelling, Optimization, Inference UNSW, 11-12 December 2014 This talk is based on:

- T. R. BIELECKI AND M. RUTKOWSKI (2014)
 Valuation and hedging of contracts with funding costs and collateralization.
 Working paper, Illinois Institute of Technology and University of Sydney.
- T. NIE AND M. RUTKOWSKI (2014) Fair and profitable bilateral prices under funding costs and collateralization. Working paper, University of Sydney.
- T. NIE AND M. RUTKOWSKI (2014)
 Fair bilateral prices in Bergman's model. Working paper, University of Sydney.
- T. NIE AND M. RUTKOWSKI (2014)
 A BSDE approach to fair bilateral pricing under endogenous collateralization.
 Working paper, University of Sydney.

Funding costs and collateral agreements

- PITERBARG, V. (2010) Funding beyond discounting: collateral agreements and derivatives pricing. *Risk*, February, 97–102.
- FUJII, M. AND TAKAHASHI, A. (2010) Asymmetric and imperfect collateralization, derivative pricing, and CVA. Working paper.
- MORINI, M. AND PRAMPOLINI, A. (2011) Risky funding: A unified framework for counterparty and liquidity charges. *Risk*, March, 70–75.
- PALLAVICINI, A., PERINI, D. AND BRIGO, D. (2012) Funding, collateral and hedging: Uncovering the mechanism and the subtleties of funding valuation adjustments. Working paper.
- CRÉPEY, S. (2012) Bilateral counterparty risk under funding constraints. Part I: Pricing. Part II: CVA. Forthcoming in *Mathematical Finance*.
- BURGARD, C. AND KJAER, M. (2013) Funding costs, funding strategies. *Risk*, December, 82–87.
- MERCURIO, F. (2013) Bergman, Piterbarg and beyond: Pricing derivatives under collateralization and differential rates. Working paper.

2 Arbitrage-Free Property

3 Replication and Fair Bilateral Prices

4 Endogenous Collateral

Two-Sided Collateral

New challenges

- The financial crisis of 2007-2009 has led to major changes in the operations of financial markets.
- The defaultability of the counterparties became the central problem of financial management.
- The classic paradigm of discounting future cash flows using the risk-free rate is no longer accepted as a viable pricing rule.
- In the presence of funding costs, counterparty credit risk, and collateral (margin account) the classic arbitrage pricing theory no longer applies.
- As a consequence, the analysis of the counterparty credit risk and price formation for collateralized contracts under differential funding costs are currently the most challenging problems in Mathematical Finance.
- A non-linear and asymmetric pricing and hedging paradigm is emerging.

- To describe trading strategies in the presence of funding costs (multiple yield curves) and margin account (collateral).
- To propose suitable approaches to pricing of financial contracts within this novel framework.
- We focus on one party (dubbed the *hedger*), but the same technique can be used to solve the problem for the *counterparty*.
- The mark-to-market convention for collateral requires that both parties agree in respect of the fair bilateral value of the contract. Hence the actual problem is two-dimensional, rather than one-dimensional.
- The latter issue is especially important in the case of the so-called *endogenous collateral* where we deal with a two-dimensional fully-coupled backward stochastic differential equation (BSDE).

Extended Bergman's (1995) model

- The semimartingale S^i is the price of the ith risky security.
- Cash accounts B^l and B^b for unsecured *lending* and *borrowing* of cash.
- The *collateral* accounts $B^{c,l}$ and $B^{c,b}$ are strictly positive and continuous processes of finite variation.
- A contract is a process A representing the cumulative cash flows.
- The collateral process C with $C_T = 0$ can be represented as

$$C_t = C_t \mathbb{1}_{\{C_t \ge 0\}} + C_t \mathbb{1}_{\{C_t < 0\}} = C_t^+ - C_t^-$$

where C_t^+ is the cash collateral received at time t by the hedger and C_t^- represents the cash collateral posted by him.

- The process $V(x, \varphi, A, C)$ represents the hedger's wealth.
- The process $V^p(x, \varphi, A, C) = V(x, \varphi, A, C) + C_t$ is the portfolio's value.
- The initial endowment is denoted by x (or rather x_1 and x_2).

Self-financing trading strategy

• For a portfolio $\varphi = (\xi^1, \dots, \xi^d, \psi^l, \psi^b, \eta^b, \eta^l)$, the hedger's wealth process equals

$$V_t(x,\varphi,A,C) = \sum_{i=1}^d \xi_t^i S_t^i + \psi_t^l B_t^l + \psi_t^b B_t^b + \eta_t^b B_t^{c,b} + \eta_t^l B_t^{c,l}$$

where $\eta^b_t = -(B^{c,b}_t)^{-1}C^+_t$ and $\eta^l_t = (B^{c,l}_t)^{-1}C^-_t.$

• A trading strategy (x, φ, A, C) is self-financing when the value process

$$V^p_t(x,\varphi,A,C) := \sum_{i=1}^d \xi^i_t S^i_t + \psi^l_t B^l_t + \psi^b_t B^b_t$$

satisfies

$$\begin{split} V_t^p(x,\varphi,A,C) &= x + \sum_{i=1}^d \int_0^t \xi_u^i \, dS_u^i + \int_0^t \psi_u^l \, dB_u^l + \int_0^t \psi_u^b \, dB_u^b + A_t \\ &+ \int_0^t \eta_u^b \, dB_u^{c,b} + \int_0^t \eta_u^l \, dB_u^{c,l} + C_t. \end{split}$$

Funding costs

We have

$$\psi^l_t = (B^l_t)^{-1} \Big(V^p_t(x,\varphi,A,C) - \sum_{i=1}^d \xi^i_t S^i_t \Big)^+$$

and

$$\psi_t^b = -(B_t^b)^{-1} \Big(V_t^p(x,\varphi,A,C) - \sum_{i=1}^d \xi_t^i S_t^i \Big)^-.$$

• Let $dB_t^l = r_t^l B_t^l dt$ and $dB_t^b = r_t^b B_t^b dt$ for some processes $0 \le r^l \le r^b$.

- Let $B^{c,l} = B^{c,b} = B^c$ where $dB_t^c = r_t^c B_t^c dt$ for some process r^c .
- We define the process F^C

$$F_t^C := \int_0^t \eta_u^b \, dB_u^{c,b} + \int_0^t \eta_u^l \, dB_u^{c,l} = -\int_0^t r_u^c C_u \, du$$

and we denote $A^C := A + C + F^C$.

Trading with Funding Costs and Collateral

Dynamics of discounted portfolio's value

Proposition

Let
$$\widetilde{S}_t^{i,l} := (B_t^l)^{-1} S_t^i$$
. The process $Y^l := (B^l)^{-1} V^p(x, \varphi, A, C)$ satisfies

$$dY_t^l = \sum_{i=1}^d Z_t^{l,i} \, d\widetilde{S}_t^{i,l} + G_l(t, Y_t^l, Z_t^l) \, dt + (B_t^l)^{-1} \, dA_t^C$$

where $Z^{l,i} = \xi^i, \, i = 1, 2, \dots, d$ and the mapping G_l equals

$$G_l(t,y,z) = \sum_{i=1}^d r_t^l (B_t^l)^{-1} z^i S_t^i + (B_t^l)^{-1} \left(r_t^l \left(y B_t^l - \sum_{i=1}^d z^i S_t^i \right)^+ - r_t^b \left(y B_t^l - \sum_{i=1}^d z^i S_t^i \right)^- \right) - r_t^l y.$$

Let $\widetilde{S}^{i,b}_t:=(B^b_t)^{-1}S^i_t.$ The process $Y^b:=(B^b)^{-1}V^p(x,\varphi,A,C)$ satisfies

$$dY_t^b = \sum_{i=1}^d Z_t^{b,i} \, d\tilde{S}_t^{i,b} + G_b(t,Y_t^b,Z_t^b) \, dt + (B_t^b)^{-1} \, dA_t^C$$

where $Z^{b,i} = \xi^i, i = 1, 2, \dots, d$ and the mapping G_b equals

$$G_b(t,y,z) = \sum_{i=1}^d r_t^b (B_t^b)^{-1} z^i S_t^i + (B_t^b)^{-1} \left(r_t^l \left(y B_t^b - \sum_{i=1}^d z^i S_t^i \right)^+ - r_t^b \left(y B_t^b - \sum_{i=1}^d z^i S_t^i \right)^- \right) - r_t^b y.$$

Definition of netted wealth

The concept of the netted wealth is the gateway to study arbitrage issues in our non-linear and asymmetric approach.

Definition

The netted wealth $V^{\rm net}(y_1,y_2,\varphi,\widetilde{\varphi},A,C)$ is given by

 $V^{\mathrm{net}}(y_1, y_2, \varphi, \widetilde{\varphi}, A, C) := V(y_1, \varphi, A, C) + V(y_2, \widetilde{\varphi}, -A, -C)$

where $x = y_1 + y_2$ and φ , $\widetilde{\varphi}$ are self-financing trading strategies.

Note that $V_0^{\text{net}}(x, \varphi, A, C) = x$ for any contract (A, C) and any strategy φ .

Definition

A self-financing trading strategy $(y_1, y_2, \varphi, \tilde{\varphi}, A, C)$ is *admissible* if the discounted netted wealth process $\tilde{V}^{l, \text{net}}(y_1, y_2, \varphi, \tilde{\varphi}, A, C) := V^{\text{net}}(y_1, y_2, \varphi, \tilde{\varphi}, A, C)/B^l$ is bounded from below.

Arbitrage opportunity

Definition

An admissible strategy (x,φ,A,C) is an arbitrage opportunity for the hedger with respect to (A,C) whenever

$$\mathbb{P}(V_T^{\mathrm{net}}(y_1, y_2, \varphi, \widetilde{\varphi}, A, C) \geq V_T^0(x)) = 1$$

and

$$\mathbb{P}(V_T^{\text{net}}(y_1, y_2, \varphi, \widetilde{\varphi}, A, C) > V_T^0(x)) > 0$$

where

$$V_t^0(x) := x^+ B_t^l - x^- B_t^b$$

for all $t \in [0,T]$. A model is *arbitrage-free* for the hedger if there is no arbitrage opportunity in regard to any contract (A, C).

Martingale measure and ex-dividend prices

Assumption

There exists a probability measure $\widetilde{\mathbb{P}}^l$ equivalent to \mathbb{P} such that the processes $\widetilde{S}^{i,l}, i = 1, 2, \ldots, d$ are $(\widetilde{\mathbb{P}}^l, \mathbb{G})$ -local martingales

Proposition

If a martingale measure $\widetilde{\mathbb{P}}^l$ exists and $x_1 \ge 0$, $x_2 \ge 0$ then the model is arbitrage-free for the hedger and for the counterparty.

Definition

Any \mathcal{G}_t -measurable random variable for which a replicating strategy for (A, C) over [t, T] exists is called the *hedger's ex-dividend price* at time t for a contract (A, C) and it is denoted by $P_t^h(x_1, A, C)$. Hence for some self-financing strategy φ

$$V_T(V_t^0(x_1) + P_t^h(x_1, A, C), \varphi, A - A_t, C) = V_T^0(x_1).$$

Fair bilateral prices

Definition

For an arbitrary level x_2 of the counterparty's initial endowment and a strategy $\tilde{\varphi}$ replicating (-A, -C), the counterparty's ex-dividend price $P_t^c(x_2, -A, -C)$ at time t for a contract (-A, -C) is implicitly given by the equality

$$V_T(V_t^0(x_2) - P_t^c(x_2, -A, -C), \widetilde{\varphi}, -A + A_t, -C) = V_T^0(x_2).$$

By a *fair bilateral price*, we mean the price level at which no arbitrage opportunity arises for either party. Hence the following definition.

Definition

The \mathcal{G}_t -measurable interval

$$\mathcal{R}_{t}^{f}(x_{1}, x_{2}) := \left[P_{t}^{c}(x_{2}, -A, -C), P_{t}^{h}(x_{1}, A, C) \right]$$

is called the range of fair bilateral prices at time t for the contract (A, C).

Bilaterally profitable prices

Definition

Assume that the inequality $P_t^h(x_1, A, C) \neq P_t^c(x_2, -A, -C)$ holds. Then the \mathcal{G}_t -measurable interval $\mathcal{R}_t^p(x_1, x_2) := [P_t^h(x_1, A, C), P_t^c(x_2, -A, -C)]$ is called the range of bilaterally profitable prices at time t of an OTC contract (A, C).

Three concepts of arbitrage:

- (A.1) The classic definition of an arbitrage opportunity that may arise by trading in primary assets, as in the classic FTAP.
- (A.2) An arbitrage opportunity associated with a long hedged position in some contract combined with a short hedged position in the same contract. The contract's price is considered to be exogenously given, but is arbitrary.
- (A.3) An arbitrage opportunity related to the fact that the hedger and the counterparty may require different premia to implement their respective (super-)replicating strategies. Here an arbitrage opportunity is simultaneously available to both parties at a *negotiated* OTC price.

Endogenous collateral

- We wish to find out whether the range of fair bilateral prices is non-empty, at least for some classes of contracts (A, C).
- Let C depend on both the hedger's value $V^h := V(x_1, \varphi, A, C)$ and the counterparty's value $V^c := V(x_2, \widetilde{\varphi}, -A, -C)$.
- It is given as follows

$$C_t = q(V_t^0(x_1) - V_t^h, V_t^c - V_t^0(x_2)) = q(-P_t^h, -P_t^c)$$

where $q: \mathbb{R}^2 \to \mathbb{R}$ is a Lipschitz continuous function with q(0,0) = 0.

• The convex collateralization is given by $q(y_1, y_2) = \alpha y_1 + (1 - \alpha)y_2$ for some $\alpha \in [0, 1]$, so that

$$C_t = \alpha (V_t^0(x) - V_t^h) + (1 - \alpha) (V_t^c - V_t^0(x)) = -(\alpha P_t^h + (1 - \alpha) P_t^c).$$

• One can also introduce the haircuts.

Model assumptions

Assumption

We postulate that:

(i) there exists a probability measure $\widetilde{\mathbb{P}}^l$ equivalent to \mathbb{P} such that \widetilde{S}^l is a continuous, square-integrable, $(\widetilde{\mathbb{P}}^l, \mathbb{G})$ -martingale and has the predictable representation property with respect to the filtration \mathbb{G} under $\widetilde{\mathbb{P}}^l$, (ii) there exists an $\mathbb{R}^{d \times d}$ -valued, \mathbb{G} -adapted process m^l such that

$$\langle \widetilde{S}^l \rangle_t = \int_0^t m_u^l (m_u^l)^* \, du$$

where the process $m^l(m^l)^*$ is invertible and satisfies $m^l(m^l)^* = \mathbb{S}\sigma\sigma^*\mathbb{S}$ where σ is a *d*-dimensional square matrix of \mathbb{G} -adapted processes satisfying the *ellipticity* condition: there exists a constant $\Lambda > 0$

$$\sum_{i,j=1}^d \left(\sigma_t \sigma_t^*\right)_{ij} a_i a_j \ge \Lambda |a|^2 = \Lambda a^* a, \quad \forall \, a \in \mathbb{R}^d, \, t \in [0,T].$$

The case of hedger's collateral

 $\bullet\,$ Assume first that C depends only on the hedger's value

$$C_t = q(V_t^0(x_1) - V_t^h) = q(-P_t^h)$$

for some Lipschitz continuous function $q: \mathbb{R} \to \mathbb{R}$ such that q(0) = 0.

• The price P^c solves the BSDE which depends on the solution P^h and thus the pricing/hedging BSDEs are partially coupled.

Proposition

If $x_1 \ge 0, x_2 \ge 0$, then for any contract (A, C) we have for every $t \in [0, T]$

$$P_t^c(x_2, -A, -C) \le P_t^h(x_1, A, C), \quad \widetilde{\mathbb{P}}^l - \text{a.s.}$$

so that the range of fair bilateral prices $\mathcal{R}_t^f(x_1, x_2)$ is non-empty, $\widetilde{\mathbb{P}}^l$ – a.s.

The range may be empty, in general, if the initial endowments have opposite signs, that is, when $x_1 > 0$ and $x_2 < 0$.

Partially coupled pricing BSDEs

Proposition

Let $x_1 \ge 0$ and $x_2 \ge 0$. The hedger's price equals $P^h := P^h(x_1, A, C) = Y^1$ where (Y^1, Z^1) is the unique solution to the BSDE

$$\begin{cases} dY_t^1 = Z_t^{1,*} d\tilde{S}_t^l + f_l(t, x_1, Y_t^1, Z_t^1) dt + dA_t, \\ Y_T^1 = 0, \end{cases}$$

where

$$f_{l}(t, x_{1}, y, z) = r_{t}^{l} (B_{t}^{l})^{-1} z^{*} S_{t} - (B_{t}^{l})^{-1} \sum_{i=1}^{d} r_{t}^{i,b} (z^{i} S_{t}^{i})^{+} - x_{1} B_{t}^{l} r_{t}^{l} - r_{t}^{c} q(-y)$$

$$+ r_{t}^{l} \Big(y + q(-y) + x_{1} B_{t}^{l} + (B_{t}^{l})^{-1} \sum_{i=1}^{d} (z^{i} S_{t}^{i})^{-} \Big)^{+}$$

$$- r_{t}^{b} \Big(y + q(-y) + x_{1} B_{t}^{l} + (B_{t}^{l})^{-1} \sum_{i=1}^{d} (z^{i} S_{t}^{i})^{-} \Big)^{-}.$$

Partially coupled pricing BSDEs

Proposition

The counterparty's price equals $P^c := P^c(x_2, -A, -C) = Y^2$ where (Y^2, Z^2) is the unique solution to the BSDE

$$\begin{cases} dY_t^2 = Z_t^{2,*} d\widetilde{S}_t^l + g_l(t, x_2, Y_t^2, Z_t^2, Y_t^1) dt + dA_t, \\ Y_T^2 = 0, \end{cases}$$

where

$$g_{l}(t, x_{2}, y, z, Y_{t}^{1}) = r_{t}^{l}(B_{t}^{l})^{-1}z^{*}S_{t} + (B_{t}^{l})^{-1}\sum_{i=1}^{d} r_{t}^{i,b}(-z^{i}S_{t}^{i})^{+} + x_{2}B_{t}^{l}r_{t}^{l} - r_{t}^{c}q(-Y_{t}^{1})$$
$$- r_{t}^{l}\Big(-y - q(-Y_{t}^{1}) + x_{2}B_{t}^{l} + (B_{t}^{l})^{-1}\sum_{i=1}^{d} (-z^{i}S_{t}^{i})^{-}\Big)^{+}$$
$$+ r_{t}^{b}\Big(-y - q(-Y_{t}^{1}) + x_{2}B_{t}^{l} + (B_{t}^{l})^{-1}\sum_{i=1}^{d} (-z^{i}S_{t}^{i})^{-}\Big)^{-}.$$

Fully coupled pricing BSDEs

• We now consider the case where

$$C_t = q(V_t^0(x_1) - V_t^h, V_t^c - V_t^0(x_2)) = q(-P_t^h, -P_t^c).$$

• Then the BSDEs for the hedger's and counterparty's prices are fully coupled.

Proposition

Assume that $x_1 \ge 0$ and $x_2 \ge 0$. Then the hedger's and counterparty's prices satisfy $(P^h, P^c)^* = (Y^1, Y^2) = Y$ where (Y, Z) solves the following two-dimensional, fully-coupled BSDE

$$\begin{cases} dY_t = Z_t^* \, d\widetilde{S}_t^l + g(t, Y_t, Z_t) \, dt + d\overline{A}_t, \\ Y_T = 0, \end{cases}$$

where $g=(g^1,g^2)^*$, $\overline{A}=(A,A)^*$ and \ldots

Fully coupled pricing BSDEs

Proposition

9

for all $y = (y_1, y_2)^* \in \mathbb{R}^2$ and $z = (z_1, z_2) \in \mathbb{R}^{d \times 2}$,

and

$$g^{2}(t, y, z) = r_{t}^{l}(B_{t}^{l})^{-1}z_{2}^{*}S_{t} + x_{2}B_{t}^{l}r_{t}^{l} - r_{t}^{c}q(-y_{1}, y_{2})$$

- $r_{t}^{l}\left(-y_{2} - q(-y_{1}, -y_{2}) + x_{2}B_{t}^{l} + (B_{t}^{l})^{-1}z_{2}^{*}S_{t}\right)^{+}$
+ $r_{t}^{b}\left(-y_{2} - q(-y_{1}, -y_{2}) + x_{2}B_{t}^{l} + (B_{t}^{l})^{-1}z_{2}^{*}S_{t}\right)^{-}$

Two-Sided Collateral

Backward stochastic viability property (BSVP)

• Fix T > 0 and consider the n-dimensional BSDE

$$Y_t = \eta + \int_t^T h(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dW_s.$$

• The following definition was introduced by Buckdahn, Quincampoix and Rascanu (2000) for a non-empty, closed, convex set of $K \subset \mathbb{R}^n$.

Definition

We say that BSDE has the *backward stochastic viability property* (BSVP) in K if: for any $U \in [0,T]$ and any square-integrable $\eta \in K$ the unique solution (Y,Z) to

$$Y_t = \eta + \int_t^U h(s, Y_s, Z_s) \, ds - \int_t^U Z_s \, dW_s$$

satisfies $Y_t \in K$ for all $t \in [0, U]$, \mathbb{P} -a.s.

Two-Sided Collateral

Multi-dimensional viability theorem

- Let $\Pi_K(y)$ be the projection of a point $y \in \mathbb{R}^n$ onto K.
- Let $d_K(y)$ be the distance between y and K.
- The following result is due to Buckdahn, Quincampoix and Rascanu (2000).

Theorem

Let the generator h of BSDE satisfy the Lipschitz condition and some additional assumptions. Then BSDE has the BSVP in K if and only if for any $t \in [0,T]$, $z \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ such that $d_K^2(\cdot)$ is twice differentiable at y we have

$$4\langle y - \Pi_K(y), h(t, \Pi_K(y), z) \rangle \le \langle D^2 d_K^2(y) z, z \rangle + M d_K^2(y)$$

where M > 0 is a constant independent of (t, y, z).

Comparison theorem for two-dimensional BSDE

Theorem

Consider the two-dimensional BSDE

$$Y_t = \eta + \int_t^T h(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dW_s.$$

The following statements are equivalent:

(i) for any $U \in [0,T]$ and $\eta^1, \eta^2 \in L^2(\Omega, \mathcal{F}_U, \mathbb{P})$ such that $\eta^1 \ge \eta^2$, the unique solution (Y,Z) to the BSDE on [0,U] satisfies $Y_t^1 \ge Y_t^2$ for all $t \in [0,U]$, (ii) there exists a constant M such that for all $y, z \in \mathbb{R}^2$

$$\begin{aligned} &-4y_1^-[h^1(t,y_1^++y_2,y_2,z_1+z_2,z_2)-h^2(t,y_1^++y_2,y_2,z_1+z_2,z_2)]\\ &\leq M|y_1^-|^2+2z_1^2\mathbb{1}_{\{y_1<0\}}. \end{aligned}$$

Diffusion-type market model

 $\bullet\,$ The risky asset S is governed by the SDE

$$dS_t = \mu(t, S_t) \, dt + \sigma(t, S_t) \, dW_t$$

where \boldsymbol{W} is a one-dimensional Brownian motion.

- The filtration $\mathbb G$ is assumed to be generated by the Brownian motion W.
- $\bullet\,$ The coefficients μ and σ are such that the SDE has a unique strong solution.
- The dividend process equals $A_t^1 = \int_0^t \kappa(u, S_u) \, du$.
- We denote

$$a_t := (\sigma(t, S_t))^{-1} \big(\mu(t, S_t) + \kappa(t, S_t) - r_t^l S_t \big).$$

Assumption

We postulate that the processes a, $(\sigma(\cdot, S))^{-1}$ and all interest rates are continuous and the processes a and $(\sigma(\cdot, S))^{-1}S$ are bounded.

Fair prices of European claims

• For a European claim, we have

$$A_t - A_0 = H_T \mathbb{1}_{[T,T]}(t).$$

• Using the comparison theorem for a fully-coupled two-dimensional BSDE, we obtain the following result:

Proposition

Let $x_1 \geq 0, x_2 \geq 0$. For any European claim (H_T, C) where $H_T \in L^2(\Omega, \mathcal{F}_T, \widetilde{\mathbb{P}}^l)$ we have for every $t \in [0, T]$

$$P_t^c(x_2, -H_T, -C) \le P_t^h(x_1, H_T, C), \quad \widetilde{\mathbb{P}}^l - \text{a.s.}$$

so that the range of fair bilateral prices $\mathcal{R}_t^f(x_1, x_2)$ is non-empty.

A similar result holds for any contract (A, C) when $H_{t_i} \in L^2(\Omega, \mathcal{F}_{t_i}, \widetilde{\mathbb{P}}^l)$ and

$$A_t - A_0 = \sum_{i=1}^l H_{t_i} \mathbb{1}_{[t_i,T]}(t).$$

Concluding remarks

- We have also studied the case of the market model with funding costs and partial netting.
- However, since each risky asset may have its own funding account, the formulae are rather lengthy.
- Counterparty risk may also be included in the present framework, but new existence and comparison theorems for BSDEs are required to deal with default times.
- For a BSDE approach to mean-variance hedging, see papers by Crépey (2012) and the monograph by Crépey and Bielecki (2014).
- Another interesting concept is the *partial replication* introduced by Burgard and Kjaer (2013). However, its theory is virtually non-existent at present.

Thank you!