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Motivation

The connection between GARCH models and diffusion processes has
been well investigated in the last decade (e.g. Nelson (1990, JoE),
Duan (1997, JoE), Corradi (2000, JoE), etc)

There are not many studies which analyze the weak convergence
under both physical and risk neutral worlds.

Duan (1996, unpublished) and Heston and Nandi (2000, RFS) derived
the weak limit of Gaussian GARCH models, while Duan (2006, MF)
studied the GARCH model based on a Poisson random sum of
Gaussian random variables.

In all three papers, the risk neutralization is based on the locally risk
neutral valuation relationship (LRNVR).

In the Gaussian case, the minimal martingale measure is obtained as
the weak limit of the LRNVR.
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Our main contributions

1 We study the weak convergence of a general class of non-Gaussian
asymmetric GARCH models under both physical and risk-neutral
settings.

2 Since the LRNVR cannot be applied in this setting, we derive the
continuous time limits based on the extended Girsanov principle
(Elliott and Madan (1998, MF) and an exponential affine pricing
kernel (Christoffersen, Elkamhi, Feunou and Jacobs (2009, RFS)).
The latter is also called the conditional Esscher transform.

3 The convergence of GARCH based European options to diffusion
counterparts is numerically tested.
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Modelling the underlying under the physical measure

NGARCH(1,1) model

T = {t|t = 0, . . . ,T} set of trading dates.

Y = {Yt}t∈T = {log St}t∈T has a general NGARCH structure:

Yt − Yt−1 = r + λ(ε)
√

ht − κεt

(√
ht

)
+
√

htεt , (1)

ht = α0 + α1ht−1 (εt−1 − γ)2 + β1ht−1. (2)

{εt}t=0,...,T is a sequence of Ft−1 - conditionally i.i.d. random variables
with zero mean and unit variance distribution D(0, 1).

κεt (·) is the conditional cumulant generating function of the GARCH
innovation.

The parameter λ(ε) is usually interpreted as the market price of ε risk.

The GARCH parameters α0, α1, β1 and γ satisfy the standard
non-negativity and stationarity properties.

γ quantifies the leverage effect.
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Modelling the underlying under the physical measure

NGARCH(1,1) approximations under the physical measure

T (n) = {l |l = k/n, k = 0, 1 . . . , nT} set of trading dates. The length of
each subinterval is τ = 1/n.{

Y
(n)
l

}
l∈T (n)

=
{

log S
(n)
l

}
l∈T (n)

has the following dynamics:

Y
(n)
kτ − Y

(n)
(k−1)τ

=

(
r + λ(ε)

√
h

(n)
kτ − κ

(n)
εkτ

(√
h

(n)
kτ

))
τ +

√
τh

(n)
kτ ε

(n)
kτ , (3)

h
(n)
kτ − h

(n)
(k−1)τ

= α0(τ) + α1(τ)h
(n)
(k−1)τ

(
ε

(n)
(k−1)τ

− γ(τ)
)2

+ (β1(τ)− 1) h
(n)
(k−1)τ

,(4)

ε
(n)
kτ |F

(n)
(k−1)τ

∼ D(0, 1). (5)

{
ε

(n)
kτ

}
k=0,...,nT

is a sequence of F (n)
(k−1)τ - conditionally i.i.d. random

variables with zero mean and unit variance distribution D
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Modelling the underlying under the physical measure

Suppose f
(n)
εkτ (·) is the p.d.f. and κ

(n)
εkτ (·) the c.g.f. of ε

(n)
kτ conditional on

F (n)
(k−1)τ under P(n)

κ(n)
εkτ

(u) := lnEP(n)
[
exp

(
uε

(n)
kτ

)
| F (n)

(k−1)τ

]
<∞.

The innovations’ j th raw moments are:

Mj = EP(n)

[(
ε

(n)
kτ

)j

|F (n)
(k−1)τ

]
.

When τ = 1 the model (3)-(5) reduces to the standard asymmetric
NGARCH(1,1) model.
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Modelling the underlying under risk-neutral measures The extended Girsanov principle - Elliott and Madan (1998)

The extended Girsanov principle (EGP)

Identify a change of measure such that discounted asset prices follow the
distribution of their martingale component in:

S̃
(n)
kτ = S̃

(n)
0 A

(n)
kτ M

(n)
kτ .

A
(n)
kτ is an F (n)

kτ -predictable process:

A
(n)
kτ =

k∏
l=1

EP(n)

 S̃
(n)
lτ

S̃
(n)
(l−1)τ

∣∣∣F (n)
(l−1)τ

 .
M

(n)
kτ is a positive martingale under P(n) defined by:

M
(n)
kτ =

S̃
(n)
kτ

S̃
(n)
0 A

(n)
kτ

.

If we define W
(n)
kτ = M

(n)
kτ /M

(n)
(k−1)τ , the Doob decomposition becomes:

S̃
(n)
kτ = S̃

(n)
(k−1)τeν

(n)
kτ W

(n)
kτ , k = 0, . . . , nT .
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Modelling the underlying under risk-neutral measures The extended Girsanov principle - Elliott and Madan (1998)

ν
(n)
kτ is the one period excess discounted return process:

ν
(n)
kτ = −rτ + logEP(n)

[
exp

(
Y

(n)
kτ − Y

(n)
(k−1)τ

)∣∣∣F (n)
(k−1)τ

]
.

In our setting: ν
(n)
kτ = λ(ε)

√
h

(n)
kτ τ .

The EGP is determined by the condition that, under the new
measure, discounted asset prices follow the law of their martingale
component in the multiplicative Doob decomposition.

The Radon-Nikodym process Z
(n)
kτ is defined via the conditional p.d.f.

g
(n)
Wkτ

(·) of W
(n)
kτ under P(n):

Z
(n)
kτ :=

dQ
(n)
egp

dP(n)

∣∣∣
F (n)

kτ

=
k∏

l=1

g
(n)
Wlτ

(
S̃

(n)
lτ

S̃
(n)
(l−1)τ

)
eν

(n)
lτ

g
(n)
Wlτ

(
e−ν

(n)
lτ

S̃
(n)
lτ

S̃
(n)
(l−1)τ

) .
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Modelling the underlying under risk-neutral measures The extended Girsanov principle - Elliott and Madan (1998)

Risk-neutralized dynamics under EGP

Proposition

The risk neutral dynamics of the process
{

Y
(n)
kτ
, h

(n)
kτ

}
k=0,...,nT

introduced in (3)-(5) with respect to the extended Girsanov

risk neutral measure Q
(n)
egp become:

Y
(n)
kτ
− Y

(n)
(k−1)τ

=

(
r −

1

τ
κ

(n)
εkτ

(√
τh

(n)
kτ

))
τ +

√
τh

(n)
kτ
ε
∗(n)
kτ

,

h
(n)
kτ
− h

(n)
(k−1)τ

= α0(τ) + α1(τ)h
(n)
(k−1)τ

(
ε
∗(n)
(k−1)τ

−
√
τ%

(n)
(k−1)τ

− γ(τ)
)2

+ (β1(τ)− 1) h
(n)
(k−1)τ

,

ε
∗(n)
kτ
|F(n)

(k−1)τ
∼ D(0, 1).

Here, the innovation process
{
ε
∗(n)
kτ

}
k=0,...,nT

is a sequence of F(n)
(k−1)τ

-conditionally uncorrelated, zero mean and unit

variance D-distributed random variables under Q
(n)
egp , related to the original innovations via the expression:

ε
∗(n)
kτ

= ε
(n)
kτ

+
√
τ%

(n)
kτ
, k = 0, . . . , nT ,

where %
(n)
kτ

is given by:

%
(n)
kτ

= λ
(ε) +

1
τ
κ

(n)
εkτ

(√
τh

(n)
kτ

)
− κ(n)

εkτ

(√
h

(n)
kτ

)
√

h
(n)
kτ

.
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Modelling the underlying under risk-neutral measures Exponential affine SDF

Conditional Esscher transform (ESS)

Define the stochastic process Z (n) = {Z (n)
kτ }k=0,...,nT :

Z
(n)
kτ =

k∏
l=1

e
−
√
τθ

(n)
lτ ε

(n)
lτ −κ

(n)

ε
(n)
lτ

(
−
√
τθ

(n)
lτ

)
, Z0,n = 1.

θ(n) = {θ(n)
kτ }k=0,...,nT is an F (n) predictable process satisfying:

µ
(n)
kτ +

1

τ
κ(n)
εkτ

(√
τ

(√
h

(n)
kτ − θ

(n)
kτ

))
− 1

τ
κ(n)
εkτ

(
−
√
τθ

(n)
kτ

)
= r .

Here, µ
(n)
kτ = r + λ(ε)

√
h

(n)
kτ − κ

(n)
εkτ

(√
h

(n)
kτ

)
.

Z (n) is a P(n) martingale and Z
(n)
nT defines the equivalent martingale measure

Q
(n)
ess by Z

(n)
nT =

dQ(n)
ess

dP(n) .
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Modelling the underlying under risk-neutral measures Exponential affine SDF

Risk-neutralized dynamics under ESS

Proposition

The risk neutral dynamics of
{

Y
(n)
kτ
, h

(n)
kτ

}
k=0,...,nT

under the the exponential affine pricing kernel Q
(n)
ess are:

Y
(n)
kτ
− Y

(n)
(k−1)τ

=

(
r +

1
√
τ

√
h

(n)
kτ
κ
′(n)
εkτ

(
−
√
τθ

(n)
kτ

))
τ

+ κ
(n)
εkτ

(
−
√
τθ

(n)
kτ

)
− κ(n)

εkτ

(
√
τ

(√
h

(n)
kτ
− θ(n)

kτ

))

+

√
τh

(n)
kτ

√
κ
′′(n)
εkτ

(
−
√
τθ

(n)
kτ

)
ε
∗(n)
kτ

,

h
(n)
kτ
− h

(n)
(k−1)τ

= α0(τ) + α1(τ)h
(n)
kτ

(√
κ
′′(n)
εkτ

(
−
√
τθ

(n)
kτ

)
ε
∗(n)
kτ

+ κ
′(n)
εkτ

(
−
√
τθ

(n)
kτ

)
− γ(τ)

)2

+ (β1(τ)− 1) h
(n)
kτ
,

ε
∗(n)
kτ
|F(n)

(k−1)τ
∼ D∗(0, 1).

The innovation
{
ε
∗(n)
kτ

}
k=0,...,nT

is a sequence of F(n)
(k−1)τ

-conditionally D∗(0, 1)-distributed under Q
(n)
ess :

ε
∗(n)
kτ

=
ε

(n)
kτ
− κ′(n)

εkτ

(
−
√
τθ

(n)
kτ

)
√
κ
′′(n)
εkτ

(
−
√
τθ

(n)
kτ

) .
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Modelling the underlying under risk-neutral measures Exponential affine SDF

Gaussian Innovations

When the innovation noise is Gaussian, both propositions lead to the same
risk neutralized dynamics obtained via the local risk neutral valuation
principle (LRNVP).

%
(n)
kτ = θ

(n)
kτ = λ(ε) for any k = 0, . . . , nT .

When τ = 1, these equations reduces to the GARCH option pricing of Duan
(1995) with a leverage effect.

The Radon-Nykodym derivative has the following explicit form of a
discretized Girsanov change of measure in continuous time corresponding to
a market price of risk λ(ε):

dQ(n)

dP(n)

∣∣∣
F (n)

kτ

= exp

(
k∑

l=1

(
−
√
τλ(ε)ε

(n)
kτ −

1

2
τ
(
λ(ε)
)2
))

.
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Continuous time diffusion limits Convergence under the physical measure

Construction and constraints

The right continuous with left limit (cadlag) extension of the proposed
discrete time process is defined by:{

Y
(n)
t , h

(n)
t

}
kτ≤t<(k+1)τ

:=
{

Y
(n)
kτ , h

(n)
kτ

}
, k = 0, . . . , nT .

Define
{
F (n)

t

}
kτ≤t<(k+1)τ

:= F (n)
kτ , k = 0, . . . , nT , and write

F (n),h
t := F (n)

t

⋃{
h

(n)
t = h

}
.

Parametric Constraints (see Nelson, 1990)

lim
τ→0

α0(τ)

τ
= ω0, lim

τ→0

α1(τ)(1 + γ2(τ)) + β1(τ)− 1

τ
= −ω1,

lim
τ→0

α2
1(τ)

τ
= ω2, lim

τ→0
γ(τ) = ω3.
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Continuous time diffusion limits Convergence under the physical measure

Stochastic volatility limit under P

Proposition

Assume the above parameter conditions hold. Then, as τ approaches zero,

the process
{

Y
(n)
t , h

(n)
t

}
converges weakly to a bivariate diffusion

(
Yt , σ

2
t

)
which satisfies the following stochastic differential equation:

dYt =
(

r + λ(ε)
√

ht t − κt

(√
ht

))
dt +

√
htdB

(1)
t ,

dht = (ω0 − ω1ht) dt +
√
ω2(M3 − 2ω3)htdB

(1)
t

+
√
ω2

√
M4 −M2

3 − 1htdB
(2)
t .

Here, B
(1)
t and B

(2)
t are two independent Brownian motions on(

Ω,F , {Ft}t∈[0,...,T ] ,P
)

.
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Continuous time diffusion limits Convergence under the physical measure

Comments

In the case of Gaussian innovations the above coincides with the
standard asymmetric GARCH diffusion limit of Duan (1997).

The use of a non-Gaussian distribution for the underlying discrete
process does not alter the Hull-White structure of the variance
equation.

The diffusion coefficient of the stochastic volatility dynamics
incorporates the skewness and the kurtosis of the distribution.
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Continuous time diffusion limits Convergence of the risk neutral processes

Proposition

Under the same parametric conditions, the risk neutral processes under Q
(n)
ess converge weakly to

the same bivariate diffusion limit given below:

dYt =

(
r −

1

2
ht

)
dt +

√
ht dB

∗(1)
t ,

dht =

(
ω0 −

(
ω1 +

√
ω2(M3 − 2ω3)ν

(1)
t +

√
ω2ν

(2)
t

√
M4 −M2

3 − 1

)
ht

)
dt

+
√
ω2 (M3 − 2ω3) ht dB

∗(1)
t +

√
ω2

√
M4 −M2

3 − 1ht dB
∗(2)
t .

Here B
∗(1)
t and B

∗(2)
t are two independent Brownian motions under Q

(n)
ess :

B
∗(1)
t = B

(1)
t +

t∫
0

ν
(1)
s ds, B

∗(2)
t = B

(2)
t +

t∫
0

ν
(2)
s ds,

and the market prices of B
(1)
t and B

(2)
t risk are given by:

ν
(1)
t = λ(ε) +

1
2

ht − κt (
√

ht )
√

ht
, ν

(2)
t = 0.
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Continuous time diffusion limits Convergence of the risk neutral processes

Proposition

Under the same parametric conditions, the risk neutral processes under Q
(n)
egp converge weakly to

the same bivariate diffusion limit given below:

dYt =

(
r −

1

2
ht

)
dt +

√
ht dB

∗(1)
t ,

dht =

(
ω0 −

(
ω1 +

√
ω2(M3 − 2ω3)ν

(1)
t +

√
ω2ν

(2)
t

√
M4 −M2

3 − 1

)
ht

)
dt

+
√
ω2 (M3 − 2ω3) ht dB

∗(1)
t +

√
ω2

√
M4 −M2

3 − 1ht dB
∗(2)
t .

Here B
∗(1)
t and B

∗(2)
t are two independent Brownian motions under Q

(n)
egp :

B
∗(1)
t = B

(1)
t +

t∫
0

ν
(1)
s ds, B

∗(2)
t = B

(2)
t +

t∫
0

ν
(2)
s ds,

and the market prices of B
(1)
t and B

(2)
t risk are given by:

ν
(1)
t = λ(ε) +

1
2

ht − κt (
√

ht )
√

ht
, ν

(2)
t = −ν(1)

t

M3√
M4 −M2

3 − 1
.
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Continuous time diffusion limits Convergence of the risk neutral processes

Comments

These results can be viewed as extensions of Duan’s (1996) convergence theorem
of locally risk neutralized Gaussian GARCH models obtained via LRNVR:

Gaussian innovations:

The price of risk processes are ν
(1)
t = λ(ε) and ν

(2)
t = 0 (since M3 = 0

in the EGP case) for both risk neutral measures.
The variance equation reduces to the well-known GARCH diffusion
process obtained by applying the minimal martingale measure (MMM)
to the SV model under P.

dht = (ω0 − (ω1 − 2
√
ω2ω3) ht) dt − 2

√
ω2ω3htdB

∗(1)
t +

√
2ω2htdB

∗(2)
t .

Non-Gaussian innovations:

For the conditional Esscher transform, we obtain the MMM as the
weak limit.
For the extended Girsanov Principle, we obtain the MMM only if we

model the underlying with symmetric distributions, since ν
(2)
t = 0

whenever M3 = 0. However, skewness plays an important role here as
it induces a non-zero market price of non-hedgeable risk in the
continuous time limit.
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Continuous time diffusion limits Convergence of the risk neutral processes

For both cases, the resulting variance process does not have a Hull-White
structure since the drift is not a linear function of ht .

It has a non-linear dependence through the cumulant generating function of
the GARCH noise.

Using a Taylor expansion of the second order or of the fourth order we
obtain:

ν
(1)
t = λ(ε), ν

(1)
t = λ(ε) − 1

6
M3ht −

1

24

√
h3

t (M4 − 3).

The resulting return equation ensures that the discounted asset price is a
local martingale under Q.

S̃t is a true martingale is equivalent to having a non-positive correlation
between the asset return and its variance provided that the market price of

B
(1)
t risk ν

(1)
t is bounded.

Cov(dYt , dht) =
√
ω2 (M3 − 2ω3)

√
h3

t .
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Numerical Experiment

NGARCH(1,1) innovations, estimation and simulation

We compute differences between NGARCH(1,1) based on Gaussian and NIG
innovations and their diffusion limits option prices.

For NIG we denote ε
(n)
kτ ∼ NIG(k , a, s, `), with cumulant generating function

given by:

κ(n)
εkτ

(z) = z`+
(√

k2 − a2 −
√

k2 − (a + zs)2
)
.

The model parameters are obtained by fitting the NGARCH(1,1) model from
(3)-(4) with τ = 1 via maximum likelihood estimation (MLE). We use daily
log-returns of the S&P 500 index from January 2nd, 1988 to April 17th,
2002.

NGARCH(1,1) model with Gaussian innovations (NGARCH):

α0(1) = 9.9411·10−7, α1(1) = 0.0417, β1(1) = 0.9176, γ(1) = 0.8639, λ = 0.0414.

NGARCH(1,1) model with NIG innovations (NIG-NGARCH):

α0(1) = 8.6650·10−7, α1(1) = 0.0479, β1(1) = 0.9096, γ(1) = 0.8601, λ = 0.0419.

Additionally, the NIG invariant parameters are k = 1.7190 and a = −0.1869.
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Numerical Experiment

We compute the prices associated with European put options based on the
daily GARCH process as well as its diffusion limits.

GARCH prices are computed as discounted expected payoffs under the risk
neutral measure, since there are no closed form solutions

Since there are no closed form solutions, prices are obtained as the average
of 120 Monte Carlo simulations involving 100, 000 paths each.

Diffusion prices are computed based on sample paths simulated using an
Euler discretization of 1,024 steps per day, and the model parameters are
those induced by the corresponding GARCH processes.

We use the empirical martingale simulation (EMS) of Duan and Simonato
(1998).
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Numerical Experiment

Gaussian NGARCH and its diffusion limit Put option prices

Gaussian-NGARCH (daily frequency) and SV Prices for European Put Options S0 = 100

Maturity Model Strike=80 Strike=90 Strike=100 Strike=110 Strike=120

7
NGARCH

0.000 0.001 1.144 9.979 19.976
(0.000) (0.000) (0.003) (0.000) (0.000)

SV
0.000 0.001 1.152 9.978 19.976
(0.000) (0.000) (0.003) (0.000) (0.000)

21
NGARCH

0.001 0.082 1.964 9.967 19.930
(0.000) (0.002) (0.005) (0.001) (0.000)

SV
0.001 0.078 1.979 9.958 19.929
(0.000) (0.002) (0.005) (0.001) (0.000)

63
NGARCH

0.101 0.680 3.356 10.243 19.804
(0.003) (0.007) (0.009) (0.004) (0.001)

SV
0.094 0.682 3.378 10.230 19.798
(0.003) (0.007) (0.009) (0.004) (0.001)

126
NGARCH

0.460 1.594 4.692 10.919 19.755
(0.007) (0.011) (0.013) (0.009) (0.004)

SV
0.453 1.606 4.718 10.919 19.739
(0.008) (0.012) (0.013) (0.009) (0.003)

252
NGARCH

1.304 3.088 6.572 12.303 20.144
(0.013) (0.018) (0.019) (0.016) (0.010)

SV
1.301 3.101 6.596 12.316 20.136
(0.013) (0.018) (0.020) (0.016) (0.011)
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Numerical Experiment

NIG - NGARCH and its diffusion limit based on EGP

NIG-NGARCH (daily frequency) and NIG-SV Prices for European Put Options S0 = 100

Maturity Model Strike=80 Strike=90 Strike=100 Strike=110 Strike=120

7
NIG-NGARCH

0.000 0.005 1.145 9.979 19.976
(0.000) (0.000) (0.003) (0.000) (0.000)

NIG-SV
0.000 0.002 1.171 9.978 19.976
(0.000) (0.000) (0.003) (0.000) (0.000)

21
NIG-NGARCH

0.006 0.118 1.977 9.971 19.930
(0.001) (0.002) (0.005) (0.001) (0.000)

NIG-SV
0.003 0.108 2.013 9.956 19.929
(0.000) (0.002) (0.006) (0.001) (0.000)

63
NIG-NGARCH

0.167 0.792 3.397 10.239 19.811
(0.004) (0.007) (0.009) (0.004) (0.001)

NIG-SV
0.161 0.809 3.431 10.210 19.799
(0.004) (0.007) (0.010) (0.004) (0.001)

126
NIG-NGARCH

0.636 1.792 4.783 10.920 19.769
(0.009) (0.013) (0.014) (0.009) (0.004)

NIG-SV
0.643 1.817 4.802 10.890 19.733
(0.010) (0.014) (0.015) (0.009) (0.003)

252
NIG-NGARCH

1.655 3.419 6.773 12.368 20.166
(0.017) (0.021) (0.021) (0.017) (0.010)

NIG-SV
1.663 3.425 6.764 12.329 20.110
(0.019) (0.021) (0.021) (0.016) (0.010)
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Numerical Experiment

Convergence of Gaussian GARCH option prices to SV

Figure: Convergence of the Gaussian GARCH option prices to their continuous time limit counterparts.
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Numerical Experiment

Convergence of NIG-GARCH option prices to SV for EGP

Figure: Convergence of the NIG-GARCH option prices to their continuous time limit counterparts.
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Numerical Experiment

Pricing errors for SV models based on ESS and EGP

Figure: Square differences between NIG-GARCH diffusion limits prices based and MMM and EGP
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Numerical Experiment

NIG - NGARCH and its diffusion limit for ESS

NIG-NGARCH and SV Prices for European Call Options S0 = 500

Maturity Model K=450 K=470 K=490 K=510 K=530 K=550

7
NIG-NGARCH

50.116 30.359 12.392 2.034 0.109 0.005
(0.036) (0.042) (0.035) (0.015) (0.003) (0.001)

SV
50.090 30.289 12.424 2.088 0.064 0.000
(0.046) (0.044) (0.036) (0.014) (0.002) (0.000)

21
NIG-NGARCH

50.880 32.284 16.347 5.714 1.223 0.173
(0.051) (0.051) (0.043) (0.028) (0.012) (0.005)

SV
50.807 32.261 16.455 5.808 1.154 0.105
(0.074) (0.067) (0.053) (0.031) (0.012) (0.003)

63
NIG-NGARCH

54.903 38.260 23.964 12.987 5.868 2.178
(0.075) (0.069) (0.058) (0.046) (0.033) (0.021)

SV
54.852 38.267 24.011 13.005 5.790 2.024
(0.120) (0.106) (0.086) (0.065) (0.041) (0.023)

126
NIG-NGARCH

60.865 45.412 31.873 20.743 12.347 6.657
(0.088) (0.081) (0.072) (0.062) (0.049) (0.035)

SV
60.674 45.225 31.684 20.536 12.108 6.395
(0.142) (0.126) (0.107) (0.088) (0.066) (0.047)

252
NIG-NGARCH

70.954 56.644 43.825 32.721 23.481 16.148
(0.106) (0.100) (0.091) (0.081) (0.073) (0.064)

SV
70.297 55.952 43.120 32.023 22.812 15.523
(0.187) (0.171) (0.153) (0.133) (0.111) (0.091)
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Conclusions

We investigate the continuous time limit of non-Gaussian GARCH
models based on the extended Girsanov principle and the conditional
Esscher transform.

In both cases, the bivariate diffusion limit of the risk-neutralized
GARCH process is no longer a standard Hull-White SV model.

For the Esscher transform case, we recover the weak limit obtained by
applying the MMM to the SV model under P.

For the Extended Girsanov Principle, we recover the MMM only in
the case of symmetric distributions. For skewed GARCH innovations,
we obtain a non-zero market price of non-hedgeable risk which is
proportional to the market price of the equity risk, where the constant
of proportionality depends on the skewness and kurtosis of the
underlying distribution.

The numerical results suggest that there are no significant differences
between GARCH option pricing models based on a Normal Inverse
Gaussian distribution and their SV counterparts.
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